首页 | 本学科首页   官方微博 | 高级检索  
     检索      


LaTe1.82(1): modulated crystal structure and chemical bonding of a chalcogen‐deficient rare earth metal polytelluride
Authors:Hagen Poddig  Kati Finzel  Thomas Doert
Abstract:Crystals of the rare earth metal polytelluride LaTe1.82(1), namely, lanthanum telluride (1/1.8), have been grown by molten alkali halide flux reactions and vapour‐assisted crystallization with iodine. The two‐dimensionally incommensurately modulated crystal structure has been investigated by X‐ray diffraction experiments. In contrast to the tetragonal average structure with unit‐cell dimensions of a = 4.4996 (5) and c = 9.179 (1) Å at 296 (1) K, which was solved and refined in the space group P4/nmm (No. 129), the satellite reflections are not compatible with a tetragonal symmetry but enforce a symmetry reduction. Possible space groups have been derived by group–subgroup relationships and by consideration of previous reports on similar rare earth metal polychalcogenide structures. Two structural models in the orthorhombic superspace group, i.e.Pmmn(α,β,1 \over 2)000(?α,β,1 \over 2)000 (No. 59.2.51.39) and Pm21n(α,β,1 \over 2)000(?α,β,1 \over 2)000 (No. 31.2.51.35), with modulation wave vectors q1 = αa* + βb* + 1 \over 2c* and q2 = ?αa* + βb* + 1 \over 2c* α = 0.272 (1) and β = 0.314 (1)], have been established and evaluated against each other. The modulation describes the distribution of defects in the planar Te] layer, coupled to a displacive modulation due to the formation of different Te anions. The bonding situation in the planar Te] layer and the different Te anion species have been investigated by density functional theory (DFT) methods and an electron localizability indicator (ELI‐D)‐based bonding analysis on three different approximants. The temperature‐dependent electrical resistance revealed a semiconducting behaviour with an estimated band gap of 0.17 eV.
Keywords:modulated structure  rare earth metal polytellurides  bonding analysis  crystal structure  electrical properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号