首页 | 本学科首页   官方微博 | 高级检索  
     


Exploring dynamical electron theory beyond the Born-Oppenheimer framework: from chemical reactivity to non-adiabatically coupled electronic and nuclear wavepackets on-the-fly under laser field
Authors:Takatsuka Kazuo  Yonehara Takehiro
Affiliation:Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, 153-8902, Tokyo, Japan. kaztak@mns2.c.u-tokyo.ac.jp
Abstract:Chemical theory and its application to dynamical electrons in molecules under intense electromagnetic fields is explored, in which we take an explicit account of nuclear nonadiabatic (kinematic) interactions along with simultaneous coupling with intense optical interactions. All the electronic wavefunctions studied here are necessarily time-dependent, and thereby beyond stationary state quantum chemistry based on the Born-Oppenheimer framework. As a general and tractable alternative framework with which to track the electronic and nuclear simultaneous dynamics, we propose an on-the-fly method to calculate the electron and nuclear wavepackets coupled along the branching non-Born-Oppenheimer paths, through which their bifurcations, strong quantum entanglement between nuclear electronic motions, and coherence and decoherence among the phases associated with them are properly represented. Some illustrative numerical examples are also reported, which are aimed at our final goals; real time tracking of nonadiabatic electronic states, chemical dynamics in densely degenerate electronic states coupled with nuclear motions and manipulation and/or creation of new electronic states in terms of intense lasers, and so on. Other examples are also presented as to how the electron wavepacket dynamics can be used to analyze chemical reactions, shedding a new light on some typical and conventional chemical reactions such as proton transfer followed by tautomerization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号