首页 | 本学科首页   官方微博 | 高级检索  
     


Mott-insulator-superfluid-liquid transition in a one-dimensional bosonic Hubbard model: Quantum Monte Carlo method
Authors:V. A. Kashurnikov  A. V. Krasavin  B. V. Svistunov
Affiliation:(1) Moscow State Engineering-Physics Institute (Technical University), 115409 Moscow, Russia;(2) “Kurchatov Institute” Russian Science Center, 123182 Moscow, Russia
Abstract:The values of the insulator gap Δ in one-dimensional systems of interacting bosons described by the Hubbard Hamiltonian are calculated at low temperatures by the quantum world-line Monte Carlo algorithm. The dependence of Δ on the size of the system, the temperature, and the parameters of the model is investigated. It is shown that a chain with N a=50 sites is already sufficient to estimate the thermodynamic value of the critical quantity (t/U)c for which a transition from the insulator into the superfluid state occurs in a commensurate system. To within the computational error, this value, (t/U)c=0.300±0.005, agrees with the value (t/U)c=0.304±0.002 obtained previously by the combined “exact diagonalization + renormalization-group analysis” method. The characteristic Kosterlitz-Thouless behavior of the insulator gap is demonstrated near the critical region: Δ∼exp[−b(1−t/t c)−1/2]. Pis’ma Zh. éksp. Teor. Fiz. 64, No. 2, 92–96 (25 July 1996)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号