首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quadratic response functions in the time-dependent four-component Hartree-Fock approximation
Authors:Norman Patrick  Jensen Hans Jørgen Aa
Institution:Department of Physics and Measurement Technology, Linkoping University, SE-581 83 Linkoping, Sweden. panor@ifm.liu.se
Abstract:The second-order response function has been implemented in the time-dependent four-component Hartree-Fock approximation. The implementation is atomic orbital direct and formulated in terms of Fock-type matrices. It employs a quaternion symmetry scheme that provides maximum computational efficiency with consideration made to time-reversal and spatial symmetries. Calculations are presented for the electric dipole first-order hyperpolarizabilities of CsAg and CsAu in the second-harmonic generation optical process beta(-2omega;omega,omega). It is shown that relativistic corrections to property values are substantial in these cases--the orientationally averaged hyperpolarizabilities in the static limit beta(0;0,0) are overestimated in nonrelativistic calculations by 18% and 66% for CsAg and CsAu, respectively. The dispersion displays anomalies in the band gap region due to one- and two-photon resonances with nonrelativistically spin-forbidden states. Although weakly absorbing these states inflict divergences in the quadratic response function, since the response theoretical approach which is used adopts the infinite excited-state lifetime approximation. This fact calls for caution in applications where knowledge of the exact positioning of all excited states in the spectrum is unknown.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号