首页 | 本学科首页   官方微博 | 高级检索  
     


Transported scalar PDF calculations of autoignition of a hydrogen jet in a heated turbulent co-flow
Authors:C.W. Lee  E. Mastorakos
Affiliation:Hopkinson Laboratory, Engineering Department , University of Cambridge , Trumpington Street, CB2 1PZ, UK
Abstract:The joint scalar PDF method, as implemented in FLUENT, was used to simulate the autoignition of a jet of hydrogen in a turbulent co-flow of heated air. While the autoignition phenomenon is intermittent in the experiment, ensemble-averaged data on the effect of the flow on ignition length are available, which enables us to compare them with the steady state calculations.Results of sensitivity tests showed that the choice of chemical mechanism affects the calculation more than the mixing model and model constants. Further calculations for different initial conditions (i.e. temperature and velocity of the jet T jet and U jet and the co-flow T air and U air) have been done using a set of parameters selected after the sensitivity study. Scatter plots and conditional scalar profiles confirmed that the ignition is always initiated in lean mixture fractions. The ignition length was predicted with good accuracy for the case of U jet>U air but not so well for the case of U jetU air. For the equal velocity case, increasing the velocity resulted in delayed autoignition time (defined as the ignition length divided by the mean velocity), in agreement with the experimental trend. The results give credence to the use of the joint scalar PDF method for autoignition in non-premixed flows.
Keywords:autoignition  hydrogen jet  non-premixed flame  PDF method  CFD
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号