首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Velocity of weakly turbulent flames of finite thickness
Authors:V Akkerman  V Bychkov
Institution:1. Institute of Physics, Ume? University , SE–90187, Ume?, Sweden;2. Nuclear Safety Institute of Russian Academy of Sciences , B. Tulskaya 52, Moscow, 113191, Russia;3. Institute of Physics, Ume? University , SE–90187, Ume?, Sweden
Abstract:

The velocity increase of a weakly turbulent flame of finite thickness is investigated using analytical theory developed in previous papers. The obtained velocity increase depends on the flow parameters: on the turbulent intensity, on the turbulent spectrum and on the characteristic length scale. It also depends on the thermal and chemical properties of the burning matter: thermal expansion, the Markstein number and the temperature dependence of transport coefficients. It is shown that the influence of the finite flame thickness is especially strong close to the resonance point, when the wavelength of the turbulent harmonic is equal to the cut off wavelength of the Darrieus–Landau instability. The velocity increase is almost independent of the Prandtl number. On the contrary, the Markstein number is one of the most important parameters controlling the velocity increase. The relative role of the external turbulence and the Darrieus–Landau instability for the velocity increase is studied for different parameters of the flow and the burning matter. The velocity increase for turbulent flames in methane and propane fuel mixtures is calculated for different values of the equivalence ratio. The present theoretical results are compared with previous experiments on turbulent flames. In order to perform the comparison, the theoretical results of the present paper are extrapolated to the case of a strongly corrugated flame front using the ideas of self-similar flame dynamics. The obtained theoretical results are in a reasonable agreement with the experimental data, taking into account the uncertainties of both the theory and the experiments. It is shown that in many experiments on turbulent flames the Darrieus–Landau instability is more important for the flame velocity than the external turbulence.
Keywords:Near-limit  fire  flamelets  reduced buoyancy  spread rate  thermally-thin  instability  fingering  combustion  population  logistic model  bifurcation  extinction  time lag
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号