首页 | 本学科首页   官方微博 | 高级检索  
     


Propagation of premixed laminar flames in 3D narrow open ducts using RBF-generated finite differences
Authors:Victor Bayona  Manuel Kindelan
Affiliation:1. Gregorio Millán Institute, Universidad Carlos III de Madrid, Leganés 28911, Spainvbayona@ing.uc3m.es;3. Gregorio Millán Institute, Universidad Carlos III de Madrid, Leganés 28911, Spain
Abstract:Laminar flame propagation is an important problem in combustion modelling for which great advances have been achieved both in its theoretical understanding and in the numerical solution of the governing equations in 2D and 3D. Most of these numerical simulations use finite difference techniques on simple geometries (channels, ducts, ...) with equispaced nodes. The objective of this work is to explore the applicability of the radial basis function generated finite difference (RBF-FD) method to laminar flame propagation modelling. This method is specially well suited for the solution of problems with complex geometries and irregular boundaries. Another important advantage is that the method is independent of the dimension of the problem and, therefore, it is very easy to apply in 3D problems with complex geometries. In this work we use the RBF-FD method to compute 2D and 3D numerical results that simulate premixed laminar flames with different Lewis numbers propagating in open ducts.
Keywords:laminar flames  flame velocity  radial basis functions (RBF)  meshless methods  RBF-FD
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号