首页 | 本学科首页   官方微博 | 高级检索  
     


Simulation of transient turbulent methane jet ignition and combustion under engine-relevant conditions using conditional source-term estimation with detailed chemistry
Authors:J. Huang  W. K. Bushe
Affiliation:Department of Mechanical Engineering , University of British Columbia , Vancouver, BC, Canada , V6T 1Z4
Abstract:The ignition and combustion processes of transient turbulent methane jets under high-pressure and moderate temperature conditions were simulated using a computationally efficient combustion model. Closure for the mean chemical source-terms was obtained with Conditional Source-term Estimation (CSE) using first conditional moment closure in conjunction with a detailed chemical kinetic mechanism, which was reduced to a Trajectory-Generated Low-Dimensional Manifold (TGLDM). The accuracy of the manifold was first validated against the direct integral method by comparing the predicted reactive scalar profiles in three methane–air reaction systems: a laminar premixed flame, a laminar flamelet and a perfectly stirred reactor. Detailed CFD simulations incorporating the CSE-TGLDM model were able to provide reasonably good predictions of the experimental ignition delay and initial ignition kernel locations of the methane jets reported in the literature with relatively low computational cost. Nitrogen oxides formed in the methane jet flame were found to be underpredicted by the model by as much as a factor of 2. The discrepancy may be attributable to the inability of the simulation to account for the effects of the rarefaction wave in the shock-tube experiments.
Keywords:Chemical kinetic mechanism reduction  Autoignition  Transient turbulent jets
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号