首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles
Authors:M A Trunov  M Schoenitz  E L Dreizin
Institution:Department of Mechanical Engineering , New Jersey Institute of Technology , Newark, NJ, 07102-1972, USA
Abstract:The mechanism of aluminium oxidation is quantified and a simplified ignition model is developed. The model describes ignition of an aluminium particle inserted in a hot oxygenated gas environment: a scenario similar to the particle ignition in a reflected shock in a shock tube experiment. The model treats heterogeneous oxidation as an exothermic process leading to ignition. The ignition is assumed to occur when the particle's temperature exceeds the alumina melting point. The model analyses processes of simultaneous growth and phase transformations in the oxide scale. Kinetic parameters for both direct oxidative growth and phase transformations are determined from thermal analysis. Additional assumptions about oxidation rates are made to account for discontinuities produced in the oxide scale as a result of increase in its density caused by the polymorphic phase changes. The model predicts that particles of different sizes ignite at different environment temperatures. Generally, finer particles ignite at lower temperatures. The model consistently interprets a wide range of the previously published experimental data describing aluminium ignition.
Keywords:Aluminium  Ignition temperature  Oxidation kinetics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号