首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of addition of a non-equidiffusional reactant to an equidiffusional diffusion flame
Authors:Ulrich Niemann  Kalyanasundaram Seshadri  Forman A Williams
Institution:Department of Mechanical and Aerospace Engineering , University of California at San Diego , La Jolla , CA , 92093-0411 , USA
Abstract:A Burke–Schumann (flame-sheet) formulation is developed for diffusion flames between a fuel and oxidiser with Lewis numbers of unity, subject to addition to the fuel and/or oxidiser stream of a different reactant for which the Lewis number differs from unity. This formulation is applied to laminar counterflow diffusion-flame experiments, reported here, in which hydrogen was added to either methane–nitrogen mixtures or oxygen–nitrogen mixtures at normal atmospheric pressure, with both feed streams at normal room temperature. Experimental conditions were adjusted to fix selected values of the stoichiometric mixture fraction and the adiabatic flame temperature, and the strain rate was increased gradually, maintaining the momentum balance of the two streams, until extinction occurred. At the selected sets of values, the strain rate at extinction was measured as a function of the hydrogen concentration in the fuel or oxidiser stream. The ratio of the fraction of the oxidiser flux that consumes hydrogen to the fraction that consumes fuel was calculated from the new Burke–Schumann formulation, and it was found that, within experimental uncertainty, the ratio of the extinction strain rate with hydrogen addition to that without was the same at any given value of this oxygen flux ratio, irrespective of whether the hydrogen was added on the fuel or oxidiser side. This experimental result was also in close agreement with computational predictions employing detailed chemistry. These results imply that differences in detailed hydrogen concentration profiles within the reaction zone have little or no influence on the chemical kinetics of extinction when the stoichiometric mixture fraction, the adiabatic flame temperature, and the proportion of oxygen that consumes the added fuel are fixed. This same correspondence may be expected to apply for other fuels and additives.
Keywords:non-premixed flames  non-equidiffusional  extinction  hydrogen  kinetic modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号