首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxidation chemistry of poly(ethylene glycol)-supported carbonylruthenium(II) and dioxoruthenium(VI) meso-tetrakis(pentafluorophenyl)porphyrin
Authors:Zhang Jun-Long  Huang Jie-Sheng  Che Chi-Ming
Institution:Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Abstract:Ru(II)(F(20)-tpp)(CO)] (1, F(20)-tpp=meso-tetrakis(pentafluorophenyl)porphyrinato dianion) was covalently attached to poly(ethylene glycol) (PEG) through the reaction of 1 with PEG and sodium hydride in DMF. The water-soluble PEG-supported ruthenium porphyrin (PEG-1) is an efficient catalyst for 2,6-Cl(2)pyNO oxidation and PhI==NTs aziridination/amidation of hydrocarbons, and intramolecular amidation of sulfamate esters with PhI(OAc)(2). Oxidation of PEG-1 by m-CPBA in CH(2)Cl(2), dioxane, or water afforded a water-soluble PEG-supported dioxoruthenium(VI) porphyrin (PEG-2), which could react with hydrocarbons to give oxidation products in up to 80 % yield. The behavior of the two PEG-supported ruthenium porphyrin complexes in water was probed by NMR spectroscopy and dynamic light-scattering measurements. PEG-2 is remarkably stable to water. The second-order rate constants (k(2)) for the oxidation of styrene and ethylbenzene by PEG-2 in dioxane-water increase with water content, and the k(2) values at a water content of 70 % or 80 % are up to 188 times that obtained in ClCH(2)CH(2)Cl.
Keywords:homogeneous catalysis  oxidation  porphyrinoids  ruthenium  supported catalysts
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号