Renner-Teller nonadiabatic coupling terms: An ab-initio study of the HNH molecule |
| |
Authors: | Halász G J Vibók A Baer R Baer M |
| |
Affiliation: | Department of Information Technology, University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary. |
| |
Abstract: | In this Communication we present the first theoretical/numerical treatment of nonadiabatic coupling terms (NACT) that originate from the Renner-Teller (RT) model, namely, those that follow from the splitting of an electronic level of a linear molecule when it becomes bent. These two newly formed states are characterized by different symmetries and are designated as A and B. Our main findings: (1) The RT NACTs are quantized as long as they are calculated close enough to collinear configuration of the molecule (in this case HNH). Their value is tau = 1 (the Jahn-Teller values in similar situations, are tau = (1/2)). (2) Calculation of RT NACTs at bent configurations (i.e., at a distance from the linear axis) yield decreased values, sometimes by more than 50%. This last finding implies that in strongly bent configurations the two-state Hilbert subspace (formed by the above mentioned A and B states) is affected by upper states, most likely via Jahn-Teller conical intersections. (3) This study has also important practical implications. The fact that the RT NACTs decrease in (strongly) bent situations implies that analyzing spectroscopic data employing only the two Pi-states may not be sufficient in order to achieve the required accuracy. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|