首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mechanism for reduction catalysis by metal oxo: hydrosilation of organic carbonyl groups catalyzed by a rhenium(V) oxo complex
Authors:Ison Elon A  Trivedi Evan R  Corbin Rex A  Abu-Omar Mahdi M
Institution:Brown Laboratory, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
Abstract:The rhenium oxo complex Re(O)(hoz)2]TFPB], 1 (where hoz = 2-(2'-hydroxyphenyl)-2-oxazoline(-) and TFPB = tetrakis(pentafluorophenyl)borate) catalyzes the hydrosilation of aldehydes and ketones under ambient temperature and atmosphere. The major organic product is the protected alcohol as silyl ether. Isolated yields range from 86 to 57%. The reaction requires low catalyst loading (0.1 mol %) and proceeds smoothly in CH2Cl2 as well as neat without solvent. In the latter condition, the catalyst precipitates at the end of reaction, allowing easy separation and catalyst recycling. Re(O)(hoz)(H), 3, was prepared, and its involvement in an ionic hydrosilation mechanism was evaluated. Complex 3 was found to be less hydridic than Et3SiH, refuting its participation in catalysis. A viable mechanism that is consistent with experimental findings, rate measurements, and kinetic isotope effects (Et3SiH/Et3SiD = 1.3 and benzaldehyde-H/benzaldehyde-D = 1.0) is proposed. Organosilane is activated via eta2-coordination to rhenium, and the organic carbonyl adds across the coordinated Si-H bond 2 + 2] to afford the organic reduction product.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号