首页 | 本学科首页   官方微博 | 高级检索  
     


Shell-model calculations for the zinc isotopes
Authors:J.F.A. Van Hienen  W. Chung  B.H. Wildenthal
Affiliation:Cyclotron Laboratory and Department of Physics, Michigan State University, East Lansing, Michigan 48824, USA
Abstract:Shell-model calculations for the zinc isotopes have been carried out with active particles distributed in the 1p32, 0f52and 1p12 orbits outside a closed “56Ni” core. The effective Hamiltonian used was one obtained by Koops and Glaudemans from a fit to Ni and Cu level energies. An average absolute deviation of 0.19 MeV between the calculated and experimental ground-state binding energies is obtained for the A = 62?68 Zn isotopes. Good agreement is also found between most calculated and experimental excitation energies and spectroscopic factors for single-nucleon transfer for the low-lying levels in these nuclei. Experimentally known B(E2) values are generally well reproduced by the present model with effective charges of 1.0 ± 0.1 and 1.6 ± 0.2 for the neutron and proton, respectively. Magnetic dipole as well as Gamow-Teller transitions are not well accounted for by these calculations and seem to be sensitive to excitations of the 56Ni core.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号