首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Forces acting on water droplets falling in oil under the influence of an electric field: numerical predictions versus experimental observations
Authors:M Chiesa  JA Melheim  A Pedersen  S Ingebrigtsen  G Berg
Institution:aSINTEF Energy Research, NO-7465 Trondheim, Norway;bNTNU, NO-7491 Trondheim, Norway
Abstract:The combination of an electric field and a moderate turbulent flow is a promising technique for separating stable water–oil emulsions. Field-induced charges on the water droplets will cause adjacent droplets to align with the field and attract each other. The present work describes the forces that influence the kinematics of droplets falling in oil when exposed to an electric field. Mathematical models for these forces are presented and discussed with respect to a possible implementation in a multi-droplet Lagrangian framework. The droplet motion is mainly due to buoyancy, drag, film-drainage, and dipole–dipole forces. Attention is paid to internal circulations, non-ideal dipoles, and the effects of surface tension gradients.Experiments are performed to observe the behavior of a droplet falling onto a stationary one. The droplet is exposed to an electric field parallel to the direction of the droplet motion. The behavior of two falling water droplets exposed to an electric field perpendicular to the direction of their motion is also investigated until droplet coalescence. The droplet motion is recorded with a high-speed CMOS camera. The optical observations are compared with the results from numerical simulations where the governing equations for the droplet motion are solved by the RK45 (Runge Kutta) Fehlberg method with step-size control and low tolerances. Results, using different models, are compared and discussed in detail. A framework is otlined to describe the kinematics of both a falling rigid spherical particle and a fluid droplet under the influence of an electric field.
Keywords:Coalescence  Discrete element method  Electric field  Droplets  Dipole–  dipole  Film-thinning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号