首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Functional mimic of dioxygen-activating centers in non-heme diiron enzymes: mechanistic implications of paramagnetic intermediates in the reactions between diiron(II) complexes and dioxygen
Authors:Lee Dongwhan  Pierce Brad  Krebs Carsten  Hendrich Michael P  Huynh Boi Hanh  Lippard Stephen J
Institution:Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Abstract:Two tetracarboxylate diiron(II) complexes, Fe(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)(C(5)H(5)N)(2)] (1a) and Fe(2)(mu-O(2)CAr(Tol))(4)(4-(t)BuC(5)H(4)N)(2)] (2a), where Ar(Tol)CO(2)(-) = 2,6-di(p-tolyl)benzoate, react with O(2) in CH(2)Cl(2) at -78 degrees C to afford dark green intermediates 1b (lambda(max) congruent with 660 nm; epsilon = 1600 M(-1) cm(-1)) and 2b (lambda(max) congruent with 670 nm; epsilon = 1700 M(-1) cm(-1)), respectively. Upon warming to room temperature, the solutions turn yellow, ultimately converting to isolable diiron(III) compounds Fe(2)(mu-OH)(2)(mu-O(2)CAr(Tol))(2)(O(2)CAr(Tol))(2)L(2)] (L = C(5)H(5)N (1c), 4-(t)BuC(5)H(4)N (2c)). EPR and M?ssbauer spectroscopic studies revealed the presence of equimolar amounts of valence-delocalized Fe(II)Fe(III) and valence-trapped Fe(III)Fe(IV) species as major components of solution 2b. The spectroscopic and reactivity properties of the Fe(III)Fe(IV) species are similar to those of the intermediate X in the RNR-R2 catalytic cycle. EPR kinetic studies revealed that the processes leading to the formation of these two distinctive paramagnetic components are coupled to one another. A mechanism for this reaction is proposed and compared with those of other synthetic and biological systems, in which electron transfer occurs from a low-valent starting material to putative high-valent dioxygen adduct(s).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号