首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Catalytic action of gold atoms on the oxidation of Si(111) surfaces
Authors:A Cros  J Derrien  F Salvan
Institution:Faculté des Sciences de Luminy, Case 901, Département de Physique, F-13288 Marseille Cédex 9, France
Abstract:Auger spectroscopy, electron energy loss spectroscopy and ion depth profiling techniques, under ultra high vacuum conditions, have been used in a comparative study of the oxidation of clean and gold precovered silicon (111) surfaces. Exposure of a Si surface covered by a few Au monolayers to an oxygen partial pressure induces the formation of SiO4 tetrahedra even at room temperature. In contrast, oxidation under the same conditions of a clean Si(111) surface leads to the well known formation of a chemisorbed oxygen monolayer. In the case of the Au covered surfaces, the enhancement of the oxide growth is attributed to the presence of an AuSi alloy where the hybridization state of silicon atoms is modified as compared to bulk silicon. This Au catalytic action has been investigated with various parameters as the substrate temperature, oxygen partial pressure and Au coverage. The conclusions are two fold. At low temperature (T < 400°C), gold atoms enhance considerably the oxidation process. SiO4 tetrahedra are readily formed even at room temperature. Nevertheless, the SiO2 thickness saturates at about one monolayer, this effect being attributed to the lack of Si atoms alloyed with gold in the reaction area. By increasing the temperature (from 20°C to ~400°C), silicon diffusion towards the surface is promoted and a thicker SiO2 layer can be grown on top of the substrate. In the case of the oxidation performed at temperature higher than 400°C, the results are similar to the one obtained on a clean surface. At these temperatures, the metallic film agglomerates into tridimensional crystallites on top of a very thin AuSi alloyed layer. The fact that the latter has no influence on the oxidation is attributed to the different local arrangement of atoms at the sample surface.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号