首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radical cation of a trimethylenemethane with a nondegenerate ground state
Authors:Bally Thomas  Maltsev Alexander  Gerson Fabian  Frank Daniel  de Meijere A
Institution:Department of Chemistry, University of Fribourg, Switzerland.
Abstract:Upon ionization by gamma-irradiation in frozen CFCl(3), or by X-irradiation in an Ar matrix, 2,2,3,3-tetramethylmethylenecyclopropane (MCP-Me4) readily undergoes ring opening to yield the radical cation of 1,1,2,2-tetramethyltrimethylenemethane (TMM-Me4). The hyperfine-coupling constants for TMM-Me4(.+) are (mT) -1.99 (2H), +0.53 (6H), and +0.19 (6H), and the singly occupied orbital closely resembles one of the two degenerate nonbonding pi-MOs (NBMOs) of trimethylenemethane (TMM). Due to the expected effect of the methyl substituents, this "symmetric" NBMO, psi(2+) (b(1)), is energetically favored relative to its "antisymmetric" counterpart, psi(2-) (a(2)), so that the ground state assumes a structure with (2)B(1) symmetry in the C(2v) point group. Calculations show that the ring opening in the primary radical cation MCP-Me4(.+) to yield TMM-Me4(.+) is spontaneous, whereas in the parent system (MCP(.+) --> TMM(.+) a low barrier does exist. In contrast to the previously investigated case of the radical cation of tetramethyleneethane, the "electromer" of TMM-Me4(.+), in which the unpaired electron occupies psi(2-), cannot be attained photochemically.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号