Structural analysis of boron compounds using 11B-3QMAS solid state NMR |
| |
Affiliation: | 1. Institute for Condensed Matter Physics NASU, Lviv, Ukraine;2. University of Ljubljana, Department of Chemistry and Chemical Technology, Chair of Physical Chemistry, Večna pot 113, Ljubljana SI-1000, Slovenia |
| |
Abstract: | The structural analysis of three boron compounds, boron carbide (B4C), silicon tetraboride (SiB4) and hexagonal-boron nitride (h-BN), were performed using 2D 11B-triple quantum MAS (3QMAS) solid state NMR capable of averaging the second-order quadrupolar interaction of 11B that cause line broadening, splitting and low frequency shift of the central transition (−1/2, 1/2). The coordination number around the boron atom and structural symmetry of each boron compound is discussed by means of the isotropic chemical shift Δσ and the quadrupolar coupling constant CQ calculated from 3QMAS spectra. Δσ of SiB4 is quite larger than that of B4C, which is thought to be caused by its structural distortion and distribution. Δσ of h-BN was found to be higher frequency shift obviously than that of B4C and SiB4 because of the difference of the boron coordination number, three-coordinated in h-BN and six-coordinated in B4C and SiB4. h-BN has very large CQ compared to other two boron compounds since the h-BN forming a two-dimensional network has less structural symmetry than B4C and SiB4. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|