首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An analytical delamination model for laminated plates including bridging effects
Institution:1. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;2. Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Abstract:A penalised interface model, whose strain energy is the penalty functional related to interface adhesion constraint, is introduced in conjunction with a damageable interface whose local constitutive law, in turn, represents bridging stress effects, in order to analyse delamination and bridging phenomena in laminated plates. The laminate is modelled by means of first-order shear deformable layer-wise kinematics and the governing equations are formulated in the form of a non-linear differential system with moving intermediate boundary conditions related to opportune delamination and bridging growth conditions. The problem is solved through an analytical approach. The model leads to an accurate and self-consistent evaluation of the energy release rate and its mode components due to the inclusion of significant contributions arising from coupling between in-plane and transverse shear stresses, and to an asymptotic estimate of interlaminar stresses. The salient features of the proposed model are investigated in the context of an energy balance approach and of a J-integral formulation, thus providing simple results useful to model delamination growth and bridging behaviour when mixed mode loading is involved. The accuracy of the proposed model is substantiated through comparisons with results from continuum analysis obtained by a finite element (FE) procedure. The effectiveness of the proposed model is highlighted by showing the solution of a two-layered plate scheme subjected to pure and mixed mode loading conditions and to fibre bridging stresses. The results point out that the present model, despite its low computational cost in comparison with more complex FE analyses, is an efficient tool to predict delamination and bridging evolution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号