首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous sodium chloride solutions at T=298.15 K
Institution:1. Laboratory of Thermodynamics of Solutions of Non-electrolytes and Biologically Active Substances, G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russian Federation;2. Laboratory of Nitrogen-containing Compounds, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Ave., 199119 Moscow, Russian Federation
Abstract:Partial molar heat capacities (Cop,2,m) and volumes (Vo2,m) of seven monosaccharides, namely, d(−)-ribose, d(−)-arabinose, d(+)-xylose, d(+)-glucose, d(+)-mannose, d(+)-galactose, and d(−)-fructose; five disaccharides, namely, sucrose, d(+)-cellobiose, d(+)-maltose monohydrate, d(+)-lactose monohydrate, d(+)-trehalose dihydrate, and one trisaccharide, d(+)-raffinose pentahydrate, have been determined in NaCl(aq), m = (1.0, 2.0, and 3.0) mol·kg−1 at T=298.15 K from volumic heat capacity and density measurements employing a Picker flow microcalorimeter and a vibrating-tube densimeter, respectively. These data were combined with the earlier reported Cop,2,m and Vo2,m values in water to calculate the corresponding partial molar properties of transfer (ΔtrCop,2,m and ΔtrVo2,m) from water to aqueous sodium chloride solutions at infinite dilution. These transfer parameters are positive, and the values increase with the concentration of sodium chloride for all the saccharides. Transfer parameters have been discussed in terms of solute-cosolute interactions on the basis of a cosphere overlap model. Pair and higher-order interaction coefficients have also been calculated from transfer parameters.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号