首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic strength of fluid membranes
Affiliation:1. Departments of Physics and Pathology, University of British Columbia, Vancouver V6T 1Z1, BC, Canada;2. Departments of Biomedical Engineering and Physics, Boston University, Boston, MA 02215, USA
Abstract:Rupturing fluid membrane vesicles with a steady ramp of micropipette suction yields a tension distribution that images the kinetic process of membrane failure. When plotted on a log scale of tension loading rate, the distribution peaks (membrane strengths) define a dynamic tension spectrum with distinct regimes that reflect passage of prominent energy barriers along the pathway to rupture. Demonstrated here by tests on giant PC lipid vesicles over loading rates from 0.06–60 mN/m/s, the stochastic process of rupture can be modelled as a causal sequence of two thermally-activated transitions where each transition governs membrane strength on separate scales of loading rate. Under fast ramps of tension, a steep linear regime appears in each spectrum at high strengths which implies that failure requires nucleation of a rare nanoscale defect. The slope and projected intercept yield defect size and spontaneous production rate respectively. However, under slow ramps of loading, the spectrum crosses over to a shallow-curved regime at lower strength, which is consistent with the kinetic impedance to opening an unstable hole in a fluid film. The dependence of rupture tension on rate reveals hole edge energy and frequency scale for thermal fluctuations in size. To cite this article: E. Evans, V. Heinrich, C. R. Physique 4 (2003).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号