首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorescence and ESR studies on membrane oxidative damage by gamma radiation
Authors:B N Pandey  K P Mishra
Institution:1. Cellular and Free Radical Radiation Biology Section, Radiation Biology Division, Bhabha Atomic Research Centre, Mumbai, India
Abstract:Oxidative damage to cellular membranes critically controls the manifestation of cellular response to ionizing radiation. To gain further insight into the damaging mechanisms, we have investigated the effects of γ-radiation-generated free-radical-mediated peroxidative damage in egg yolk lecithin unilamellar liposomal membranes by employing 1,6-diphenyl-1,3,5-hexatriene (DPH). Alterations in lipid bilayer fluidity and malondialdehyde (MDA) formation were measured in irradiated liposomal membranes as a function of radiation dose (0.1-1 kGy). A relationship seems to exist between the degree of radiation-induced peroxidative damage and the magnitude of DPH fluorescence decay in irradiated membranes. Radiation-induced membrane rigidization and MDA formation were significantly reduced when α-tocopherol, a natural membrane antioxidant, was present in the liposomes suggesting an involvement of lipid free radicals in the mechanism of the damage process. The results of the present study have been compared with those obtained by the electron spin resonance (ESR) technique on human erythrocyte ghost membranes with spin-labeled phospholipids having the unique capability to sensitively report on the dynamic state of the lipid environment inside the bilayer membrane. Iodoacetamide and N-ethylmaleimide spin labels were used to investigate alterations in membrane proteins. These results have contributed to our understanding of mechanisms involved in radiation membrane oxidative damage in terms of lipid peroxidation, fluidity changes and involvement of -SH groups of membrane proteins. Combined use of fluorescence and ESR spin-label techniques is of potential interest in probing the deeper molecular mechanisms of radiation injury in cellular membranes for developing strategies to modify the radiation damage to cells.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号