首页 | 本学科首页   官方微博 | 高级检索  
     检索      

炸药爆炸作用下液体破碎后颗粒尺寸分布的研究
引用本文:胡栋,韩肇元,张寿齐,赵玉华,王炳仁,陈军,孙珠妹,蔡庆军,姚久成,董石.炸药爆炸作用下液体破碎后颗粒尺寸分布的研究[J].高压物理学报,2008,22(1):6-10.
作者姓名:胡栋  韩肇元  张寿齐  赵玉华  王炳仁  陈军  孙珠妹  蔡庆军  姚久成  董石
作者单位:1. 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳,621900;四川大学高温高压物理研究所,四川成都,610065
2. 中国科技大学力学和机械工程系,安徽合肥,230027
3. 中国工程物理研究院,四川绵阳,621900
4. 中国工程物理研究院流体物理研究所冲击波物理与爆轰物理实验室,四川绵阳,621900
5. 四川大学高温高压物理研究所,四川成都,610065
基金项目:国家自然科学基金 , 国防重点实验室基金 , 国家重点基础研究发展计划(973计划)
摘    要: 对液体抛撒的液滴尺寸进行研究在军事和民用上是很重要的,国内刚开始使用激光散射仪开展此项研究工作。利用R. A. Dobbins等人的液体颗粒测量技术,研制了一套既简单又实用的测量液体抛撒过程中液滴尺寸的实验装置——激光散射仪。对于激光与液体微粒的相互作用,当微粒的反射与折射和吸收效应可被忽略时,可导出液体微粒对激光散射的光强公式。只要测量激光被微粒散射的光强,就可推算出微粒的Sauter平均直径。在使用激光散射仪测量液体抛撒液滴尺寸的实验中,用水代替爆炸抛撒液体,测量结果表明:液体抛撒二次破碎中,在固定位置测量到的云雾区液滴Sauter平均直径随测量时间的增加呈现出减小的趋势;而云雾区的宽度则随着与抛撒中心距离的增大而呈现出增加的趋势;云雾区前沿的液滴Sauter平均直径随着与抛撒中心距离的增加而呈现出先逐渐增大然后迅速减小的趋势。为便于比较,对燃料抛撒二次破碎进行了回收法测量和数值模拟计算,其测量与计算结果与用激光散射仪测量的结果有较好的一致性。

关 键 词:激光  散射  液体  抛撒  Sauter平均直径
文章编号:1000-5773(2008)01-0006-05
收稿时间:2007-03-20;
修稿时间:2007年3月20日

Studies on the Distribution of Breakdown Liquid Particle Size under Explosive Detonation
HU Dong,HAN Zhao-Yuan,ZHANG Shou-Qi,ZHAO Yu-Hua,WANG Bing-Ren,CHEN Jun,SUN Zhu-Mei,CAI Qing-Jun,YAO Jiu-Cheng,DONG Shi.Studies on the Distribution of Breakdown Liquid Particle Size under Explosive Detonation[J].Chinese Journal of High Pressure Physics,2008,22(1):6-10.
Authors:HU Dong  HAN Zhao-Yuan  ZHANG Shou-Qi  ZHAO Yu-Hua  WANG Bing-Ren  CHEN Jun  SUN Zhu-Mei  CAI Qing-Jun  YAO Jiu-Cheng  DONG Shi
Institution:1. Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China;2. China Academy of Engineering Physics, Mianyang 621900, China;3. Department of Modern Mechanism, China University of Science and Technology, Hefei 230027, China;4. Institute of High Temperature and High Pressure Physics, Chengdu 610065, China
Abstract:It is important to study liquid particle size in the dispersion in civil and military affairs range. Up to now it is the first time for the liquid particle size in the dispersion to be measured in our country using laser scattering apparatus, under explosive detonation. Based on the analysis on the interaction law between laser and liquid particles and the technique of measuring liquid particle size used by R. A. Dobbins et al, a set of simple and practical apparatus (i. e. laser scattering apparatus) has successfully developed to determine the liquid particle size in the secondary breakup of the fuel dispersion in this paper. For the interaction of laser with liquid particles, we have derived the light intensity formula of scattering on condition of neglecting the effects of reflection and refraction of light and absorption of light. This light intensity formula of scattering allows us to measure the Sauter mean diameter of liquid particles. In our experiment of measuring the liquid particle size in the process of the fuel dispersion, we substitute the explosively dispersed liquid with water. The experimental results show that during the secondary breakup of the liquid dispersion the Sauter mean diameter of liquid particles measured at the fixed position in the atomization area becomes smaller as time increases, the width of the atomization area becomes larger as the distance from the center of the fuel dispersion increases, and the Sauter mean diameter of particles in the front of atomization area decreases rapidly after increasing gradually as the distance increases. To be compared with other experimental results, the liquid particle size has been measured by the recovery method, and a numerical simulation of the secondary breakup of the liquid dispersion has also been performed. The obtained results are in a good agreement with those measured using laser scattering apparatus.
Keywords:laser  scattering  liquid particles  dispersion  Sauter mean diameter
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《高压物理学报》浏览原始摘要信息
点击此处可从《高压物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号