首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ab initio study of small He cluster ions He n + ,n=2, 3, 4, 5, and low-lying Rydberg states of He4
Authors:V Staemmler
Institution:1. Lehrstuhl für Theoretische Chemie, Ruhr-Universit?t Bochum, D-4630, Bochum, Germany
Abstract:SCF and CEPA calculations are applied to study the structure of small He cluster ions, He n + ,n=2, 3, 4, 5 and some low-lying Rydberg states of He4. The effect of electron correlation upon the equilibrium structures and binding energies is discussed. He 3 + has a linear symmetric equilibrium geometry with a bond length of 2.35a 0 and a binding energyD e =0.165 eV with respect to He 2 + +He (experimentally:D 0=0.17 eV which corresponds toD e ≈0.20 eV). He 4 + is a very floppy molecular ion with several energetically very similar geometrical configurations. Our CEPA calculations yield a T-shaped form with a He 3 + centre (R e = 2.35a 0) and one inductively bound He atom (4.39a 0 from the central He atom of He 3 + ) as equilibrium structure. Its binding energy with respect to He 3 + +He is 0.031 eV. A linear symmetric configuration consisting of a He 2 + centre with a bond length of 2.10a 0 and two inductively bound He atoms (4.20a 0 from the centre of He 2 + ) is only 0.02–0.03 eV higher in energy. We expect that in larger He cluster ions structures with He 2 + and He 3 + centres andn?2 orn?3 inductively bound He atoms have nearly the same energies. In He4 a low-lying metastable Rydberg state (3 Π symmetry for linear He 4 * ,3 B 1 for the T-shaped form) exists which is slightly stronger bound with respect to He 3 * +He than the corresponding ion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号