首页 | 本学科首页   官方微博 | 高级检索  
     


A green strategy for lithium isotopes separation by using mesoporous silica materials doped with ionic liquids and benzo-15-crown-5
Authors:Wen Zhou  Xiao-Li Sun  Lin Gu  Fei-Fei Bao  Xin-Xin Xu  Chun-Yan Pang  Zhi-Guo Gu  Zaijun Li
Affiliation:1. School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People’s Republic of China
2. The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People’s Republic of China
Abstract:Three new mesoporous silica materials IL15SGs (HF15SG, TF15SG and DF15SG) doped with benzo-15-crown-5 and imidazolium based ionic liquids (C8mim+PF6 ?, C8mim+BF4 ? or C8mim+NTf 2 ? ) have been prepared by a simple approach to separating lithium isotopes. The formed mesoporous structures of silica gels have been confirmed by transmission electron microscopy image and N2 gas adsorption–desorption isotherm. Imidazolium ionic liquids acted as templates to prepare mesoporous materials, additives to stabilize extractant within silica gel, and synergetic agents to separate the lithium isotopes. Factors such as lithium salt concentration, initial pH, counter anion of lithium salt, extraction time, and temperature on the lithium isotopes separation were examined. Under optimized conditions, the extraction efficiency of HF15SG, TF15SG and DF15SG were found to be 11.43, 10.59 and 13.07 %, respectively. The heavier isotope 7Li was concentrated in the solution phase while the lighter isotope 6Li was enriched in the gel phase. The solid–liquid extraction maximum single-stage isotopes separation factor of 6Li–7Li in the solid–liquid extraction was up to 1.046 ± 0.002. X-ray crystal structure analysis indicated that the lithium salt was extracted into the solid phase with crown ether forming [(Li0.5)2(B15)2(H2O)]+ complexes. IL15SGs were also easily regenerated by stripping with 20 mmol L?1 HCl and reused in the consecutive removal of lithium ion in five cycles.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号