首页 | 本学科首页   官方微博 | 高级检索  
     


Approximation in p-Norm of Univariate Concave Functions
Authors:J. Guérin  P. Marcotte  G. Savard
Affiliation:1. Département de mathématiques et génie industriel, école Polytechnique de Montréal, C.P. 6079, succursale Centre-ville, Montréal, Québec, H3C 3A7, Canada
2. Département d’informatique et de recherche opérationnelle, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, H3C 3J7, Canada
Abstract:We derive worst-case bounds, with respect to the L p norm, on the error achieved by algorithms aimed at approximating a concave function of a single variable, through the evaluation of the function and its subgradient at a fixed number of points to be determined. We prove that, for p larger than 1, adaptive algorithms outperform passive ones. Next, for the uniform norm, we propose an improvement of the Sandwich algorithm, based on a dynamic programming formulation of the problem.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号