首页 | 本学科首页   官方微博 | 高级检索  
     


Photoinduced inverse Sonogashira coupling reaction
Authors:Lizhu Zhang  Cunbo Wei  Jiawen Wu  Dan Liu  Yinchao Yao  Zhuo Chen  Jianxun Liu  Chang-Jiang Yao  Dinghua Li  Rongjie Yang  Zhonghua Xia
Affiliation:School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081 China.; School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081 China
Abstract:Alkynes are widely used in chemistry, medicine and materials science. Here we demonstrate a transition-metal and photocatalyst-free inverse Sonogashira coupling reaction between iodoalkynes and (hetero)arenes or alkenes under visible-light irradiation. Mechanistic and computational studies suggest that iodoalkynes can be directly activated by visible light irradiation, and an excited state iodoalkyne acted as an “alkynyl radical synthetic equivalent”, reacting with a series of C(sp2)–H bonds for coupling products. This work should open new windows in radical chemistry and alkynylation method.

A transition-metal and photocatalyst-free, photoinduced inverse Sonogashira coupling reaction was developed. Under visible-light irradiation, the excited state iodoalkyne acted as an “alkynyl radical synthetic equivalent”.

Alkynes are among the most important class of compounds in organic chemistry. Because of their structural rigidity, special electronic properties and numerous methods available for the functionalization of the triple bond, alkynes are important tools and structural elements both in medicinal chemistry and materials sciences.1 Therefore, the development of a new methodology to introduce carbon–carbon triple bonds is of great importance in organic chemistry. The Sonogashira coupling reaction is typically used for the formation of C(sp)–C(sp2) bonds starting from hetero(aryl) halides and terminal alkynes.2 Recently, “inverse Sonogashira coupling” involving the direct alkynylation of unreactive C(sp2)–H bonds with readily available alkynyl halides has received growing interest in the development of a complementary strategy (Fig. 1a). Various main-group and transition metals have been developed to promote this transformation.3 In addition, a photomediated Sonogashira reaction without a photocatalyst was also developed by several groups (Fig. 1b).4Open in a separate windowFig. 1Models of alkynylation. (a) Conventional inverse Sonogashira reaction. (b) Photomediated Sonogashira reaction. (c) SOMOphilic alkynylation. (d) Photoinduced inverse Sonogashira reaction.In recent years, SOMOphilic alkylnylation (SOMO = singly occupied molecular orbital) has become an excellent method of introducing alkynyl groups (Fig. 1c).5 Based on photoredox and transition metal catalysis, numerous in situ generated radicals undergo α-addition and β-elimination to alkynyl reagents, like the broadly applicable ethynylbenziodoxolone (EBX) reagent. Various radical alkynylations were thus discovered by Li,6 Chen,7 Waser,8 and many other groups.9 However, extending the scope of radical precursors, more atom–economic reactions, and a deeper understanding of the mechanism in these transformations are still highly desirable.After the discovering of trityl radicals by Gomberg in 1900, the “rational” era of radical chemistry has since begun.10 Now, the development of radical reactions, especially those involving C(sp3) and C(sp2) radicals, enables rapid access to drug discovery, agrochemistry, materials science, and other disciplines.11 However, the C(sp) radical remains a baffling species. Due to their very high energy, short life time, and limited and harsh preparation methods, alkynyl radicals remain an elusive species, which just exists in some extreme environments, like outer-space and the petrochemical industry.12 Even though alkynyl radicals have been proposed as intermediates for some alkynylation methods, they were regarded as mysterious species and ignored by organic chemists for a long time.13 Recently, two approaches have been developed to aid the alkynyl radical generation step. In 2015, Hashmi and collaborators reported a [Au2(μ-dppm)2]2+ catalyzed free radical–radical C(sp)–C(sp3) bond coupling reaction between iodoalkynes and aliphatic amines.14 Under irradiation of sunlight, the dimeric gold complex was proposed to reduce the iodine acetylide to an alkynyl radical. In 2017, Li developed a transition-metal-free alkynylation reaction between iodoalkyne and 2-indolinone.15 Iodoalkynes could release alkynyl radicals under high temperature conditions. In 2019, we reported an Au(i) and Ir(iii) catalyzed alkynylative cyclization of o-alkylnylphenols with iodoalkynes, wherein the photosensitized energy transfer promoted the oxidative addition of a gold(i) complex with iodoalkynes.16 Based on our continuous interest in haloalkyne and photo-chemistry, we proposed that an iodoalkyne could be a potential “alkynyl radical precursor” under light irradiation. In this work, we uncovered a novel mode of transition-metal and photocatalyst-free, direct photoexcitation of iodoalkynes for the inverse Sonogashira coupling reaction with arenes, heteroarenes, and alkenes via an “alkynyl-radical type” transfer (Fig. 1d).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号