首页 | 本学科首页   官方微博 | 高级检索  
     


Detonation diffraction through different geometries
Authors:Rémy Sorin  Ratiba Zitoun  Boris Khasainov  Daniel Desbordes
Affiliation:(1) Laboratoire de Combustion et de Détonique, ENSMA, CNRS UPR 9028, BP 40109, 86961 Futuroscope Cedex, France;(2) CEA, DAM, DIF, 91297 Arpajon, France
Abstract:We performed the study of the diffraction of a self-sustained detonation from a cylindrical tube (of inner diameter d) through different geometric configurations in order to characterise the transmission processes and to quantify the transmission criteria to the reception chamber. For the diffraction from a tube to the open space the transmission criteria is expressed by d c  = k c ·λ (with λ the detonation cell size and k c depending on the mixture and on the operture configuration, classically 13 for alkane mixtures with oxygen). The studied geometries are: (a) a sharp increase of diameter (D/d > 1) with and without a central obstacle in the diffracting section, (b) a conical divergent with a central obstacle in the diffracting section and (c) an inversed intermediate one end closed tube insuring a double reflection before a final diffraction between the initiator tube and the reception chamber. The results for case A show that the reinitiation process depends on the ratio d/λ. For ratios below k c the re-ignition takes place at the receptor tube wall and at a fixed distance from the step, i.e. closely after the diffracted shock reflection shows a Mach stem configuration. For ratios below a limit ratio k lim (which depends on D/d) the re-ignition distance increases with the decrease of d/λ. For both case A and B the introduction of a central obstacle (of blockage ratio BR = 0.5) at the exit of the initiator tube decreases the critical transmission ratio k c by 50%. The results in configuration C show that the re-ignition process depends both on d/λ and the geometric conditions. Optimal configuration is found that provides the transmission through the two successive reflections (from d = 26 mm to D ch = 200 mm) at as small d/λ as 2.2 whatever the intermediate diameter D is. This configuration provides a significant improvement in the detonation transmission conditions.
This paper was based on work that was partly presented at the International Conference on Combustion and Detonation, Zel’dovich Memorial II, Moscow, Russia, 30 August–3 September 2004, and at the 20th International Colloquium on the Dynamics of Explosions and Reactive systems, Montreal, Canada, 31 July–5 August 2005.
Keywords:Detonation  Diffraction  Re-initiation  Soot track records  Shock reflection  Mach stem
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号