首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In search of the dark state of 5-methyl-2-hydroxypyrimidine using a numerical DFT/MRCI gradient
Abstract:In a recent publication, Lobsiger et al. Phys. Chem. Chem. Phys. 12, 5032 (2010)] presented infrared and electronic absorption spectra of supersonic jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. In addition, they reported on the fast nonradiative decay of the S1 population to a dark state. In the present paper, we have investigated the mechanism and rate constants of this nonradiative decay by means of quantum chemical multi-configuration methods. To this end, minima of the lowest excited singlet and triplet states as well as the minimum-energy crossing point of singlet and triplet potential energy hypersurfaces (PEHs) have been determined employing a numerical DFT/MRCI gradient where DFT/MRCI stands for a combination of density functional theory (DFT) and a semi-empirical multi-reference configuration interaction (MRCI) approach. Rate constants have been calculated in the Condon approximation using a time-dependent approach based on harmonic oscillator functions and electronic spin–orbit coupling matrix elements evaluated at the DFT/MRCI level. It is shown that the first excited triplet state possesses 3(n?→?π*) character in the gas phase. Fast intersystem crossing is mediated by the low-lying 3(π?→?π*) state whose PEH crosses both, the S1 1(n?→?π*) and T1 3(n?→?π*) PEHs.
Keywords:multireference configuration interaction  numerical gradient  minimum-energy crossing point  spin-forbidden transition  spin–orbit coupling  time-correlation function
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号