首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantitative structure-based design: formalism and application of receptor-dependent RD-4D-QSAR analysis to a set of glucose analogue inhibitors of glycogen phosphorylase
Authors:Pan Dahua  Tseng Yufeng  Hopfinger A J
Institution:Laboratory of Molecular Modeling and Design (M/C 781), College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA.
Abstract:A method for performing quantitative structure-based design has been developed by extending the current receptor-independent RI-4D-QSAR methodology to include receptor geometry. The resultant receptor-dependent RD-4D-QSAR approach employs a novel receptor-pruning technique to permit effective processing of ligands with the lining of the binding site wrapped about them. Data reduction, QSAR model construction, and identification of possible pharmacophore sites are achieved by a three-step statistical analysis consisting of genetic algorithm optimization followed by backward elimination multidimensional regression and ending with another genetic algorithm optimization. The RD-4D-QSAR method is applied to a series of glucose inhibitors of glycogen phosphorylase b, GPb. The statistical quality of the best RI- and RD-4D-QSAR models are about the same. However, the predictivity of the RD- model is quite superior to that of the RI-4D-QSAR model for a test set. The superior predictive performance of the RD- model is due to its dependence on receptor geometry. There is a unique induced-fit between each inhibitor and the GPb binding site. This induced-fit results in the side chain of Asn-284 serving as both a hydrogen bond acceptor and donor site depending upon inhibitor structure. The RD-4D-QSAR model strongly suggests that quantitative structure-based design cannot be successful unless the receptor is allowed to be completely flexible.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号