首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis of immersed finite cylindrical shells using a coupled BEM/FEM and spatial spectrum approach
Authors:Chia-Hung Liu  Pei-Tai Chen
Affiliation:Department of System Engineering and Naval Architecture, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan, ROC
Abstract:This study numerically analyzes submerged cylindrical shells using a coupled boundary element method (BEM) with finite element method (FEM) in conjunction with the wave number theory, in which the spatial Fourier transform of surface velocity for cylinders is directly related to pressure in a far field. The acoustic loading is formulated using a symmetric complex matrix derived from a boundary integral equation where the symmetry is based on an acoustic reciprocal principle for surface acoustics. In this formulation the acoustic loading matrix is a large acoustic element whose degree of freedom is connected to the normal displacement of the vibrating structures. The coupled BEM/FEM equation is a banded, symmetric matrix, and thus its bandwidth can be minimized using a proper algorithm. This formulation significantly increases numerical efficiency. The computed normal velocity is thus transformed to wave number representation to examine acoustic radiation. A finite plane cylindrical shell, without attached stiffeners, and a shell with internal ring stiffeners are chosen to demonstrate the present analysis procedure. The far field pressure computed directly from the integral equation and predicted by wave number theory correlates closely with increasing vibrating frequency. Meanwhile, the influences of the internal ring structures on acoustic radiation are examined using the wave number theory, which helps in understanding how internal structures influence radiated noise.
Keywords:43.40.+s   44.05.+e
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号