首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational fluid dynamics modeling of multicomponent thermal plasmas
Authors:J D Ramshaw  C H Chang
Institution:(1) Idaho National Engineering Laboratory, EG&G Idaho, Inc., P.O. Box 1625, 83415 Idaho Falls, Idaho
Abstract:A comprehensive computational model has been developed Jbr flowing thermal plasmas in the absence of electromagnetic fields, with particular emphasis on plasma jets. The plasma is represented as a rnulticomponent chemicalh, reacting ideal gas with temperature-dependent thermodynamic and transport properties. The plasma flow is governed by the transient compressible Navier-Stokes equations in two or three space dimensions. Turbulence is represented by subgrid-scale and k-epsi models. Species diffusion is calculated by an effective binary diffusion approximation, generalized to allow /or ambipolar diffusion of charged species. Ionization, dissociation, recombination, and other chemical reactions are computed by general kinetic and equilibrium chemistry algorithms. Radiation heat loss is currently modeled as a temperature-dependent energy sink. Finite-difference approximations to the governing equations are solved on a rectangular spatial mesh using explicit temporal differencing. Computational inefficiency at low Mach number is avoided br reducing the effective sound speed. The overall computational model is embodied in a new computer code called LAVA. Computational results and comparisons with experimental data are presented Jbr LAVA simulations of a steady-stare axisymmetric argon plasma jet flowing into cold argon.
Keywords:Thermal plasmas  plasma processing  rnulticomponent  chemistry  diffusion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号