首页 | 本学科首页   官方微博 | 高级检索  
     


Large strain deformation of polycrystalline metals at low homologous temperatures
Authors:J.E. Hockett  O.D. Sherby
Affiliation:Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico 87544, U.S.A.;Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, U.S.A.
Abstract:Large strain compression data (true strains to about ?3.0) are presented for polycrystalline α U and α Fe at room temperature. The results, together with other published data at low homologous temperatures (≈0.2 Tm), where Tm is the absolute melting temperature, suggest that a steady-state flow stress σs is approached after extensive strain-hardening, α U exhibits a very high strain-hardening rate, with σs ≈ 2900 MPa (420 ksi) indicating that cold-working is a very potent method of strengthening this metal. All the data evaluated can be fit by the stress-strain relation σ = σs? exp (?(Nε)p)(σs? σy), where σy is the yield stess, p is a constant equal to a for the metals analyzed, N is a constant associated with the strain-hardening characteristics of a material, σ is true stress, and ε is true strain.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号