首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Direct dynamics study of the hydrogen abstraction reaction of CF3CH2Cl + Cl → CF3CHCl + HCl
Authors:Yuan Zhao  Hongqing He  Jinglai Zhang  Li Wang
Institution:1. Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China;2. Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
Abstract:The hydrogen abstraction reaction of Cl atoms with CF3CH2Cl (HCFC‐133a) is investigated by using density function theory and ab initio approach, and the rate constants are calculated by using the dual‐level direct dynamics method. Optimized geometries and frequencies of reactants, transition state, and products are computed at the B3LYP/6‐311+G(2d,2p) level. To refine the energetic information along the minimum energy path, single‐point energy calculations are carried out at the G3(MP2) level of theory. The interpolated single‐point energy method is employed to correct the energy profiles for the title reaction. The rate constants are evaluated by using the canonical variational transition state theory with a small‐curvature tunneling correction over a wide range of temperature, 200–2000 K. The variational effect for the reaction is moderate at low temperatures and very small at high temperatures. However, the tunneling correction has an important contribution in the lower temperature range. The agreement between calculated rate constants and available experimental values is good at lower temperatures but diverges significantly at higher temperatures. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 661–667, 2012
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号