首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancing concentration and mass sensitivities for liquid chromatography trace analysis of clopyralid in drinking water
Authors:Binghe Gu  Brian Meldrum  Terry McCabe  Scott Phillips
Institution:1. The Dow Chemical Company, Analytical Sciences and Analytical Technology Center, Midland, MI, USA;2. The Dow Chemical Company, Global AgroSciences Product Support, Midland, MI, USA
Abstract:A theoretical treatment was developed and validated that relates analyte concentration and mass sensitivities to injection volume, retention factor, particle diameter, column length, column inner diameter and detection wavelength in liquid chromatography, and sample volume and extracted volume in solid‐phase extraction (SPE). The principles were applied to improve sensitivity for trace analysis of clopyralid in drinking water. It was demonstrated that a concentration limit of detection of 0.02 ppb (μg/L) for clopyralid could be achieved with the use of simple UV detection and 100 mL of a spiked drinking water sample. This enabled reliable quantitation of clopyralid at the targeted 0.1 ppb level. Using a buffered solution as the elution solvent (potassium acetate buffer, pH 4.5, containing 10% of methanol) in the SPE procedures was found superior to using 100% methanol, as it provided better extraction recovery (70–90%) and precision (5% for a concentration at 0.1 ppb level). In addition, the eluted sample was in a weaker solvent than the mobile phase, permitting the direct injection of the extracted sample, which enabled a faster cycle time of the overall analysis. Excluding the preparation of calibration standards, the analysis of a single sample, including acidification, extraction, elution and LC run, could be completed in 1 h. The method was used successfully for the determination of clopyralid in over 200 clopyralid monoethanolamine‐fortified drinking water samples, which were treated with various water treatment resins.
Keywords:Clopyralid  Concentration sensitivity  Mass sensitivity  Solid‐phase extraction  Trace analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号