首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Washless Method Enables Multilayer Coating of an Aggregation‐Prone Nanoparticulate Drug Delivery System with Enhanced Yields,Colloidal Stability,and Scalability
Abstract:Aggregation is frequently encountered during coating nanoparticles, especially when the core is not solid and the coating polyelectrolytes are weak. Here, the coating of a nanoliposome with two weak polyelectrolytes, alginate and chitosan, is investigated. First, quartz crystal microbalance with dissipation, atomic force microscopy, scanning electron microscopy, and energy dispersive spectroscopy analyses confirm the feasibility of firm adsorption of up to 16 layers of weak polyelectrolytes to the liposomal surface. Titrations are then performed to identify the lowest amounts of polyelectrolytes required to make eight saturated coating layers using the washless method. Significantly improved yields and reproducibility (almost 100%) are achieved, in addition to control over layer thickness. Attenuated total reflectance Fourier transform infrared spectroscopy studies confirm the success of layering. This is special since scientists always attempt to reduce nanoparticle aggregation by substituting the soft core, using one strong polyelectrolyte, or contending with lower yields or numbers of coating layers.
image

Keywords:aggregation  layer‐by‐layer self‐assembled coating  liposomes  nanoparticle  polyelectrolyte multilayer films
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号