首页 | 本学科首页   官方微博 | 高级检索  
     


A Trifunctional,Modular Biomaterial Coating: Nonadhesive to Bacteria,Chlorhexidine‐Releasing and Tissue‐Integrating
Abstract:Various potential anti‐infection strategies can be thought of for biomaterial implants and devices. Permanent, tissue‐integrated implants such as artificial joint prostheses require a different anti‐infection strategy than, for instance, removable urinary catheters. The different requirements set to biomaterials implants and devices in different clinical applications call for tailor‐made strategies. Here, a modular coating‐concept for biomaterials is reported, which in its full, trifunctional form comprises nonadhesiveness to bacteria and antimicrobial release, combined with enhanced tissue integration characteristics. Nonadhesiveness to proteins and bacteria is accomplished by a hydrophilic brush coating (Vitrostealth). The antimicrobial release module is constituted by a chlorhexidine releasing poly(ethylene glycol) diacrylamide based‐coating that continues to release its antimicrobial content also when underneath the nonadhesive top‐coating. The third module, enhancing tissue integration, is realized by the incorporation of the penta‐peptide Glycine‐Arginine‐Glycine‐Aspartic acid‐Serine (GRGDS) within the nonadhesive top‐coating. Modules function in concert or independently of each other. Specifically, tissue integration by the GRGDS‐module does not affect the nonadhesiveness of the Vitrostealth‐module toward bovine serum albumin and Staphylococcus aureus , while the antimicrobial release module does not affect tissue‐integration by the GRGDS‐module. Uniquely, using this modular system, tailor‐made anti‐infection strategies can thus readily be made for biomaterials in different clinical applications.
image

Keywords:antimicrobial  biomaterial  coating  infection  polymer brush  release  tissue integration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号