首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spin-locking mechanism of spin I=3/2 quadrupolar nuclei undergo magic angle spinning
Authors:Yan Zhang  Feng Deng  Jianqing Qiu  Chaohui Ye
Abstract:The spin-locking mechanism of the spin I=3/2 quadrupolar nuclei under magic angle spinning (MAS) has been theoretically and experimentally investigated, and the criterion of adiabatic passage around zero-crossings of the quadrupole splitting was inferred from the time-dependent Shrödinger equation in this article. The theory, numerical simulations, and experiments conducted in this work all indicated that second-order quadrupole interaction and off-resonance play important roles in the spin-locking of the quadrupolar nuclei, and they were responsible for the great loss of the spin-locking signals. The spin-locking for a spin I=3/2 nucleus might be achieved by minimizing the effect of the second-order quadrupole interaction by using a radio frequency (RF) offset. This offset was realized by setting the RF to the opposite position of the isotropic second-order quadrupolar shift of single quantum coherences.
Keywords:Quadrupolar nuclei  Spin-locking  Adiabatic passage  MAS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号