首页 | 本学科首页   官方微博 | 高级检索  
     


Metal doped silica membrane reactor: Operational effects of reaction and permeation for the water gas shift reaction
Authors:Scott Battersby, Mikel C. Duke, Shaomin Liu, Victor Rudolph,Jo  o C. Diniz da Costa
Affiliation:

aFilms and Inorganic Membrane Laboratory (FIMLab), Division of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia

Abstract:In this work, we investigate the performance of metal (Cobalt) doped silica membranes in a membrane reactor (MR) configuration for the low temperature water gas shift (WGS) reaction. The membranes were hydrostable and showed activated transport even after 2 weeks exposure to steam. High CO conversions resulted in the H2 and CO partial pressures in the reaction chamber moving in opposite directions, thus favouring H2/CO separation to treble (5–15) from 150 to 250 °C. On the other hand, the separation of H2/CO2 remained relatively low (2–4) as the driving force for diffusion or partial pressure of these gases remained equal in the reaction chamber irrespective of the extent of conversion. Below approximately 40% CO conversion, the MR is ineffective as the H2 driving force for permeation was so low that H2/CO selectivity was below unity. Operating under equilibrium limited conversion (space velocities 7500 h−1) conditions, very high conversions in excess of 95% were observed and there were no significant advantages of the MR performance over the packed bed reactor (PBR). However, for higher throughputs (space velocities 38000 and 75000 h−1) conversion is affected by the reaction rate, and relatively enough H2 is removed from the reactor through the membrane. Increasing temperature to 250 °C as a function of the space velocity (75000 h−1) allowed for the CO conversion in the MR to shift up to 12% as compared to the PBR.
Keywords:Metal doped silica   Membrane reactor   Water gas shift reaction   Gas separation and CO conversion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号