首页 | 本学科首页   官方微博 | 高级检索  
     


Probing the dynamics of CO2 and CH4 within the porous zirconium terephthalate UiO-66(Zr): a synergic combination of neutron scattering measurements and molecular simulations
Authors:Yang Qingyuan  Jobic Hervé  Salles Fabrice  Kolokolov Daniil  Guillerm Vincent  Serre Christian  Maurin Guillaume
Affiliation:Institut Charles Gerhardt Montpellier (UMR 5253), Université Montpellier II, CNRS, ENSCM, Montpellier, France.
Abstract:Quasi-elastic neutron scattering (QENS) measurements combined with molecular dynamics (MD) simulations were conducted to deeply understand the concentration dependence of the self- and transport diffusivities of CH(4) and CO(2), respectively, in the humidity-resistant metal-organic framework UiO-66(Zr). The QENS measurements show that the self-diffusivity profile for CH(4) exhibits a maximum, while the transport diffusivity for CO(2) increases continuously at the loadings explored in this study. Our MD simulations can reproduce fairly well both the magnitude and the concentration dependence of each measured diffusivity. The flexibility of the framework implemented by deriving a new forcefield for UiO-66(Zr) has a significant impact on the diffusivity of the two species. Methane diffuses faster than CO(2) over a broad range of loading, and this is in contrast to zeolites with narrow windows, for which opposite trends were observed. Further analysis of the MD trajectories indicates that the global microscopic diffusion mechanism involves a combination of intracage motions and jump sequences between tetrahedral and octahedral cages.
Keywords:diffusion  metal–organic frameworks  molecular dynamics  neutron diffraction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号