首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of chromium on the defect structure and their mobility in nonstoichiometric cobaltous oxide
Authors:S Mrowec
Affiliation:Department of Solid State Chemistry, Faculty of Materials Science and Ceramics, University of Mining and Metallurgy, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Abstract:Defect structure and the mobility of point defects in pure metal deficient cobalt oxide (Co1−yO) and in Co1−yO-Cr2O3 solid solutions have been studied as a function of temperature (1223-1573 K) and oxygen pressure (10-105 Pa) using microthermogravimetric techniques. It has been shown that the predominant defects in pure and Cr-doped cobaltous oxide are singly ionized cation vacancies, and 3% at of dopant is high enough to fix the concentration of predominant defects in such solid solutions on a constant level being much higher than in pure Co1−yO. Re-equilibration rate measurements have demonstrated that the chemical diffusion coefficient and thereby the mobility of point defects in pure Co1−yO is concentration independent, strongly suggesting that in spite of rather high their concentration no interactions and clustering of defects is to be expected. On the other hand, in Cr-doped cobaltous oxide, re-equilibration rate measurements have shown, that in this case the defect structure is more complicated, although singly ionized cation vacancies seem to be still predominant defects.
Keywords:A. Oxides   C. Thermogravimetry   D. Defects   D. Diffusion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号