首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of the diffusive acceleration of particles by shock waves in the primordial matter of the solar system
Authors:G K Ustinova
Institution:1.Vernadsky Institute of Geochemistry and Analytical Chemistry,Russian Academy of Sciences,Moscow,Russia
Abstract:The effects of the shock wave diffusive acceleration of particles are considered in the case of formation of isotopic relations of the anomalous Xe-HL component of xenon in relic grains of nanodiamonds in chondrites. It is shown that this component could be formed and captured simultaneously with the nanodiamond synthesis in the conditions of the explosive shock wave propagation from supernova outbursts. The specificity of isotopic composition of Xe-HL is due to the high hardness of the spectrum of nuclear-active particles at the shock wave front and its enrichment with heavy isotopes. The spallogenic nature of both the anomalous and normal components of xenon is ascertained, and the role of the subsequent evolutionary processes in the change of their isotopic systems is shown. Experimental evidence of the formation of the power law spectrum of particles with the spectral index γ ∼ 1 by the supersonic turbulence during the carbon-detonation supernova SnIa explosion is obtained; this perhaps opens new perspectives in studying the problem of the origin of cosmic rays. It is shown that at the stage of free expansion of the explosive shock wave, the degree of compression of the matter at the wave front was σ = 31 (the corresponding Mach number M ∼ 97); this led to a 31-fold increase of the magnetic field as well as of the maximum energy of accelerated particles, so that even the energy of protons reached ∼ 3 × 1015 eV, i.e., the “knee” region.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号