首页 | 本学科首页   官方微博 | 高级检索  
     


Stress, microstructure and mechanical properties of graded multilayer tetrahedral amorphous carbon films
Authors:Xiao Han  Jiaqi Zhu  Jiecai Han  Manlin Tan  Wei Gao
Affiliation:(1) Center for Composition Materials, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin, 150080, P.R. China
Abstract:Tetrahedral amorphous carbon (ta-C) films deposited using a filtered cathodic vacuum arc (FCVA) system, have high intrinsic stress which limits their application as protective coatings. To reduce the film stress and to improve the adhesion, a multilayer structure is deposited at a gradient substrate negative bias from 1500 V to 80 V. This paper investigates the stress, microstructure and nano-mechanical properties of graded multilayer ta-C film on Si substrates. Compared with that of single-layer films deposited at optimised bias, the graded multilayer film has low stress without a decline in hardness and Young’s modulus. Microstructural evaluation of the multilayer film using visible Raman spectra shows that the average content of the sp3 bonds of the multilayer film remain at a high level. Nanoscratch testing illustrates favorable scratch resistance and good adhesion of the multilayer film. Scanning electron microscope (SEM) observation confirms the collapse of the film surface along the scratching trace. Finally, deposition on single crystal germanium substrates of a durable coating ∼ 1100 nm thick, and composed of three graded multilayer films is demonstrated. PACS 81.05.Uw; 81.15.Jj; 68.65.Ac; 68.55.Nq; 68.60.Bs
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号