首页 | 本学科首页   官方微博 | 高级检索  
     


Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data
Authors:Riccardo LeardiRandy J. Pell
Affiliation:a Dipartimento di Chimica e Tecnologie Farmaceutiche e Alimentari, Via Brigata Salerno (ponte), University of Genova, I 16147 Genova, Italy
b The Dow Chemical Company, 1897 Building, Midland, MI 48667, USA
Abstract:Variable selection using a genetic algorithm is combined with partial least squares (PLS) for the prediction of additive concentrations in polymer films using Fourier transform-infrared (FT-IR) spectral data. An approach using an iterative application of the genetic algorithm is proposed. This approach allows for all variables to be considered and at the same time minimizes the risk of overfitting. We demonstrate that the variables selected by the genetic algorithm are consistent with expert knowledge. This very exciting result is a convincing application that the algorithm can select correct variables in an automated fashion.
Keywords:FT-IR spectroscopy   Genetic algorithm   Wavelength selection   Variable selection   Multivariate calibration   PLS
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号