首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Future of biological aerosol detection
Authors:Jim Ho
Institution:Defence Research Establishment Suffield (DRES), Box 4000, Medicine Hat, Alberta, Canada T1A 8K6
Abstract:Biological aerosol detection in real time is an urgent civilian and military requirement. Such detection capability will be useful in environmental monitoring, for example, in gathering information in perceived hazardous areas such as housing developments downwind of sewage treatment plants. To be truly functional, the instrument has to operate continuously, 24 h a day and 7 days a week with minimal maintenance and few false alarms. A novel concept is proposed. The system employs a rapid front-end warning/alarming mechanism based on optical technologies that provides useful information for protection decision makers. This is connected to a sample collector that feeds a slower back-end liquid chemistry system that provides analytical results to the medical personnel to assist in prophylaxis and therapy decisions. Experience gained from measuring fluorescence signals of single bacterial spores under flow cytometry (FCM) using UV excitation at 340-360 nm, was applied to concept testing of a prototype instrument, built to do the same for aerosols. This machine was capable of resolving particle size as well as fluorescence intensity of each particle under laboratory and field conditions; it was called the fluorescent aerodynamic particle sizer (FLAPS). This paper describes practical aspects of measuring biological aerosols when the results must be compared to reference samplers that provide culturable or “live” data. Treatment of particle size and fluorescence information is discussed with respect to FLAPS and reference data fidelity. Along with an objective method to evaluate FLAPS data correlation to reference data, an approach for determining limit of detection in the field is discussed. In addressing the back-end detector chemistry, we have prioritized a number of important biological characteristics that must be given to a clinician to help in prophylaxis and therapy decisions. A series of biochemical measurements are proposed to define the threat of a sample and different solutions are given to implement these tests. We predict that the future for biological detection looks promising for fluorescence in situ hybridization (FISH) techniques in identifying microorganisms. A conceptual instrument based on merging FCM and microchip-based analysis is described.
Keywords:Fluorescent aerodynamic particle sizer (FLAPS)  Fluorescence in situ hybridization  Flow cytometry (FCM)  Immunoassay  Levan  Antigen masking
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号