a Department of Physics, Shandong University, Jinan 250100, China
b Department of Optoelectronics, Shandong University, Jinan 250100, China
Abstract:
The effects of different treatments for the exchange-correlation energy on the accuracy of non-self-consistent frozen density approximation (FDA) are discussed. Local spin density approximation (LSDA) and non-local spin density approximation (NLSDA) are employed, respectively. Corresponding results obtained by using full-self-consistent density functional theory (DFT) are also given for the purpose of comparison. Explicit calculations for hydrogen bonds, covalent bonds and ionic bonds indicate that, comparing with LSDA, NLSDA can improve the accuracy of FDA as well as that of DFT. This improvement attributed to the refinements in the treatment for the electronic exchange-correlation energy may help to extend the application of FDA.