首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Giant dielectric relaxation in SrTiO3-SrMg1/3Nb2/3O3 and SrTiO3-SrSc1/2Ta1/2O3 solid solutions
Authors:V V Lemanov  A V Sotnikov  E P Smirnova and M Weihnacht
Institution:(1) Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021, Russia;(2) Leibniz Institute of Solid-State and Materials Research, Dresden, D-01069, Germany
Abstract:Ceramic samples of (1−x)SrTiO3-xSrMg1/3Nb2/3O3 and (1−x)SrTiO3-xSrSc1/2Ta1/2O3 were prepared, and their dielectric properties were studied at x=0.005–0.15 and 0.01–0.1, respectively, at frequencies 10 Hz–1 MHz and at temperatures 4.2–350 K. A giant dielectric relaxation was observed in the temperature range 150–300 K, and not so strong but well-developed relaxation was found in the temperature range 20–90 K. The activation energy U and the relaxation time τ0 were determined to be 0.21–0.3 eV and from 10−11 to 10−12 s for the high-temperature relaxation and 0.01–0.02 eV and 10−8–10−10 s for the low-temperature relaxation, respectively. The additional local charge compensation of the heterovalent impurities Mg2+ and Nb5+ (or Sc3+ and Ta5+) by free charge carriers or the host ion vacancies is suggested to be the underlying physical mechanism of the relaxation phenomena. On the basis of this mechanism, the Maxwell-Wagner model and the model of reorienting dipole centers Mg2+ (or Sc3+) associated with the oxygen vacancy are proposed to explain the high-temperature relaxation with some arguments in favor of the latter model. The polaron-like model with the Nb5+-Ti3+ center is suggested as the origin of the low-temperature relaxation. The reasons for the absence of ferroelectric phase transitions in the solid solutions under study are also discussed. From Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 1948–1957. Original English Text Copyright ? 2002 by Lemanov, Sotnikov, Smirnova, Weihnacht. This article was submitted by the authors in English.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号