首页 | 本学科首页   官方微博 | 高级检索  
     


Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming
Authors:Taher Yousefi Amiri  Jafarsadegh Moghaddas
Affiliation:1. Transport Phenomena Research Center, Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335/1996, Iran;2. Department of Chemical Engineering, Faculty of Engineering, University of Zanjan, Zanjan 45195-313, Iran
Abstract:Steam reforming of methanol was carried out on the copper-silica aerogel catalyst. The effects of reaction temperature, feed rate, water to methanol molar ratio and carrier gas flow rate on the H2 production rate and CO selectivity were investigated. Methanol conversion was increased considerably in the range of about 240-300, after which it increased at a slightly lower rate. The used feed flow rate, steam to methanol molar ratio and carrier gas flow were 1.2-9.0 mL/h, 1.2-5.0 and 20-80 mL/min, respectively. Reducing the feed flow rate increased the H2 production rate. It was found that an increase in the water to methanol ratio and decreasing the carrier gas flow rate slightly increases the H2 production rate. Increasing the water to methanol ratio causes the lowest temperature in which CO formation was observed to rise, so that for the ratio of 5.0 no CO formation was detected in temperatures lower than 375 ℃. In all conditions, by approaching the complete conversion, increasing the main product concentration, increasing the temperature and contact time, and decreasing the steam to methanol ratio, the CO selectivity was increased. These results suggested that CO was formed as a secondary product through reverse water-gas shift reaction and did not participate in the methanol steam reforming reaction mechanism.
Keywords:copper-silica aerogel  activity  CO selectivity  reaction parameters  methanol steam reforming  
本文献已被 CNKI 等数据库收录!
点击此处可从《燃料化学学报》浏览原始摘要信息
点击此处可从《燃料化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号