首页 | 本学科首页   官方微博 | 高级检索  
     

������ڵľֲ��ͷ������ع鷽��
引用本文:����,����ǿ,����,����. ������ڵľֲ��ͷ������ع鷽��[J]. 应用概率统计, 2016, 32(3): 270-278
作者姓名:����  ����ǿ  ����  ����
作者单位:??????????????
摘    要:

关 键 词:??????????  ??????????  ??????  ????  

Local Penalized Spline Regression Model Based on Range
LI Meng,YANG Lianqiang,JIANG Kun,HE Shengxian. Local Penalized Spline Regression Model Based on Range[J]. Chinese Journal of Applied Probability and Statisties, 2016, 32(3): 270-278
Authors:LI Meng  YANG Lianqiang  JIANG Kun  HE Shengxian
Affiliation:School of Mathematical Sciences, Anhui University
Abstract:??Inspired by intuitive meanings of truncated power basis'scoefficients, the local penalization based on range's linear decreasing function is givenin penalized spline regression model. This method gives less penalization to fitting curvewhere data is with more volatility, which makes fitted curve controls tradeoff betweengoodness-of-fit and smoothness better. Simulations show that regression models with localpenalized spline obtain lower information rules' scores than global penalized spline whenthe data is with heteroskedasticity.
Keywords:global penalized spline,local panelized spline  
heteroskedasticity,range,
点击此处可从《应用概率统计》浏览原始摘要信息
点击此处可从《应用概率统计》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号